Mark Scheme - AS 2.2 Rates of Reaction

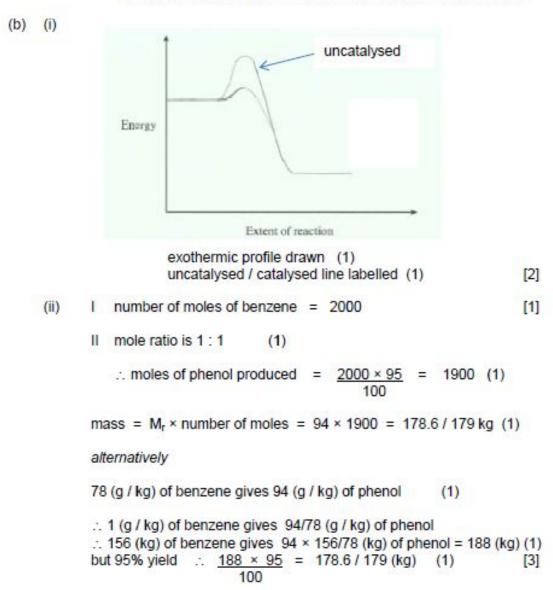
1	(a)		Use weighing scales to weigh the metal oxide (1) Use measuring cylinder to pour hydrogen peroxide solution and water into a conical flask (1)			
			water into a conical flask (1) Immerse flask in water bath at 35 °C (1)			
			Add oxide to flask and connect flask to gas syringe (1)			
			Measure volume of oxygen every minute for 10 minutes /			
			at regular time intervals (1)			
			(any 4 of above, credit possible from labelled diagram)	[4]		
	(b)		Oxide A because reaction is faster	[1]		
	(c) (i)		18 cm ³	[1]		
		(ii)	10 cm ³	[1]		
	(d)		Concentration of hydrogen peroxide has decreased (1) reaction rate decreases / fewer successful collisions (1)	[2]		
	(e)		All the hydrogen peroxide has decomposed /	[4]		
			the same quantity of hydrogen peroxide was used	[1]		
	(f)		25 cm ³	[1]		
	(g)		Reaction will take less time (1)			
			Reactants collide with more (kinetic) energy (1) More molecules have the required activation energy (1)	[3]		
			QWC Selection of a form and style of writing			
			appropriate to purpose and to complexity of subject matter	[1]		

Total [15]

2	(a)	Name of any commercially/ industrially important chlorine containing compound e.g. (sodium) chlorate(I) as bleach/ (sodium) chlorate(V) as weedkiller/ aluminium chloride as catalyst in halogenation					
			CFCs	[1]			
	(b)	(i)	$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$	must be square brackets	[1]		
		(ii)	$K_{\rm c} = \frac{0.11^2}{3.11^2} = 1.25 \times 10^{-5}$	³ follow through error (ft)	[1]		
		(iii)	K _c has no units	ft	[1]		
		(iv)	when temperature incre	ases K _c increases (1)			
			this means equilibrium h / increasing temperature	nas moved to RHS e favours endothermic reaction (1)			
			therefore ∆H for forward (mark only awarded if m		[3]		
	(c)	(i)	+2		[1]		
		(ii)	co-ordinate/ dative (cova	alent)	[1]		
		(iii)	pink is [Co(H ₂ O) ₆] ²⁺ and	blue is $[CoCl_4]^{2-}(1)$			
			(ligand is) Cl ⁻ (1)				
			(addition of HCI sends)	equilibrium to RHS (1)	[3]		
		(iv)	$[Co(H_2O)_6]^{2+}$ shown as c	octahedral [with attempt at 3D] (1)			
			[CoCl₄] ²⁻ shown as tetra	hedral/ square planar (1)	[2]		

Total [14]

(a)	Plott	ing	(2)			
	Best	fit line	(1)	[3		
(b)	(i)	С	(1)			
		Curve steeper	(1)	[2		
	(ii)	Concentration of acid is greatest		[1		
(c)	44 c	m ³ (±1 cm ³)		[1		
(d)	Mole	es Mg = 0.101/24.3 = 0.00416	(1)			
	Mole	es HCI = 2 x 0.02 = 0.04	(1)	[2		
(e)	(i)	Mg is not the limiting factor /				
		Mg now in excess / HCl not in exce	SS	[1		
	(ii)	Moles acid = 0.5 x 0.04 = 0.02	(1)			
		Volume H ₂ = 0.01 x 24 = 0.24 dm ³				
		- correct unit needed	(1)	[2		
(f)	Low	er the temperature of the acid	(1)			
	Reactants collide with less energy (1)					
	Few	er molecules that have the required a	c <mark>tivation</mark> energ	gy <mark>(1)[</mark> 3		
or	Use pieces of magnesium (1) less surface area (1) less chance of successful collisions (1)					
		ction of a form and style of writing app plexity of subject matter.	rop <mark>riate t</mark> o pu	rpose [1		


Total [16]

3

4 (a) (i) They are both elements in their standard states.

(ii)
$$\Delta H = \sum \Delta H_r \text{ products} - \sum \Delta H_r \text{ reactants}$$
 (1)
= (-286 + 0) - (-368 + 0)
= -286 + 368 = (+)82 (kJ mol⁻¹) (1) [2]

or by a cycle where correct cycle drawn (1) correct answer (1)

[1]

(iii) Look for at least four relevant positive points [4]

e.g.

- the process uses a (heterogeneous) catalyst, which can easily be separated from the gaseous products (thus saving energy)
- the only other product of the reaction is gaseous nitrogen, which is non-toxic / safe / not a harmful product
- the process uses nitrogen(I) oxide which is used up, rather than being released into the atmosphere from the other process (and causing global warming)
- the process is exothermic and the heat produced can be used elsewhere
- a relatively moderate operating temperature reduces overall costs
- high atom economy

Legibility of text; accuracy of spelling, punctuation and grammar;

clarity of meaning QWC [1]

Total [14]

5 portion to right of Ea1 labelled as molecules that react / shaded [1]

Ea₂ marked, at lower energy than Ea₁, and portion to right labelled as molecules that react / shaded [1]

6 (a)

(i)

He may have lost carbon dioxide through leaks, this would have given a lower volume than expected. (1) He used lower concentration of acid / diluted the acid with water and the rate of carbon dioxide evolution was slower than expected. (1) [2]

- (ii) The concentration of acid is higher in the first half (1) the collision rate is higher (1) [2]
- (iii) eg k = $\frac{V}{T}$ (1) \therefore k = $\frac{130}{298}$ / 0.436

 $\therefore V = 0.436 \times 323 = 141 (cm^3)$ (1)

or
$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$
 (1) $\therefore V_1 = \frac{323 \times 130}{298} = 141 \text{ (cm}^3$) (1) [2]

(c) The diagram shows two reasonable distribution curves with T₂ flatter and 'more to the right' than T₁. (1)
 Activation energy correctly labelled, or mentioned in the writing (1)
 Fraction of molecules having the required activation energy is much greater at a higher temperature (thus increasing the frequency of successful collisions) (in words) (1) [3]

The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter QWC [1]

 Place the mixture on a balance and measure the (loss in) mass (1) at appropriate time intervals (1)

OR BY OTHER SUITABLE METHOD

eg. sample at intervals / quench (1) titration (1) [2]

Total [14]

7	Provides an alternative pathway (1)				
•	with lower activation energy / more particles have energy above E _A (1)				

8	(a)		Enthalpy change when one mole of a compo its (constituent) elements (1) in their standard states / under standard cond		[2]
	(b)	(i)	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$		[1]
		(ii)	-242 = 436 + 248 - 2(O-H)	(1)	
			2(O-H) = 926 O-H = 463 kJ mol ⁻¹	(1)	[2]
	(c)	(i)	I. Burning hydrogen will not produce CO2 (or SO2) as pollutants		[1]
			II. Hydrogen is very flammable, storing as Mg is solid therefore volume occupied by given hydrogen is less		[1]
		(ii)	If the MgH ₂ is not kept dry, hydrogen will be fo could be a potential explosion	ormed and there	[1]
		(iii)	Moles MgH ₂ = <u>70000</u> = 2659.6 (2660) <u>26.32</u>	(1)	
			Moles H ₂ = 5319.2 (5320)	(1)	
			Volume H ₂ = $1.28 \times 10^5 \text{ dm}^3$	(1)	[3]
	(d)	(i)	An increase in temperature would decrease the increase in pressure would increase the yield		[1]
		(ii)	Forward reaction is exothermic so equilibrium temperature is increased	shifts to the left as (1)	
			More gaseous moles on the l.h.s. so equilibring right as pressure is increased	um shifts to the (1)	[2]
	(e)		Lower temperatures can be used Energy costs saved More product can be made in a given time (so		
			Enable reactions to take place that would be i otherwise Less fossil fuels burned to provide energy (so	(1)	
			(any 3 of above)	(1)	[3]
			QWC Legibility of text; accuracy of spelling, p grammar, clarity of meaning	unctuation and	[1]

Total [18]

[2]

(a) Lead(II) iodide or Pbl2 (1) Bright yellow (1)

[2]

(b) $2Cu^{2+} + 4l^- \rightarrow 2Cul + l_2(1)$

The precipitate is copper(I) iodide (stated or clearly indicated by state symbols) (1)
[2]

(c) Bromine has a more positive E⁶ than iodine so it is a stronger oxidising agent (1)

Bromine is able to oxidise iodide (1)

Bromine has a less positive E[®] than chlorine so it is a weaker oxidising agent (1)

Bromine is not able to oxidise chloride (1)

MAX 3

OR Calculate EMF for each reaction (1 each) and state that positive EMF means reaction is feasible (1) [3]

- QWC Legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning [1]
- (d) 1 mark for each two products or observations KHSO₄ HI H₂S SO₂ S I₂ [MAX 2 for products]

Yellow solid rotten egg smell steamy fumes

Black solid or brown solution or purple fumes

MAX	[3]

- (e) (i) Measure time taken for a sudden colour change (1) Rate = 1 ÷ time (1)
 - (ii) I. pH 1 has a concentration of H⁺ ten times higher than pH 2. [1]
 - II. Order with respect to $H_2O_2 = 1$ (1) Order with respect to $I^- = 1$ (1) Order with respect to $H^+ = 0$ (1) [MAX 2 for the stated orders] Rate = $k[H_2O_2][I^-](1)$ [3]
 - III. k = 0.028 (1) mol⁻¹dm³ s⁻¹ (1) [ecf from rate equation] [2]
 - IV. Rate equation is unchanged and increasing temperature increases the value of the rate constant [1]

Total [20]

[2]

9

- (a reaction in which) the rate of the forward reaction is equal to the rate 10 (a) of the backward reaction [1] (b) goes darker / more brown (1) because the (forward) reaction has a +ve ΔH / is endothermic (1) goes paler / less brown (1) because there are more moles / molecules on RHS (1) no change (because catalysts do not affect the position of an equilibrium) (1) [5] (C) moles $N_2H_4 = 14000/32.04 = 437.0$ (1) (i) this produces $437.0 \times 3 = 1311$ moles of gas (1) volume = $1311 \times 24 = 3.15 \times 10^4 \text{ dm}^3$ (1) [minimum 2 sf] [3]
 - (ii) (large volume of) gas produced [1]